

1

Tomasz Woch, Eng.
The School of Banking and Management in Krakow
tomasz.woch@gmail.com
Małgorzata Żabińska, Ph.D., Eng.
The School of Banking and Management in Krakow
gosia.zabinska@gmail.com
Janusz Majewski, Ph.D., Eng.
The School of Banking and Management in Krakow
kr951fc@gmail.com

REQUIREMENT DESCRIPTION IN DEDICATED IT SYSTEM
DEVELOPMENT

Introduction

A goal without a plan is only a wish – as it was said by Antoine de Saint-Exupéry, a

French writer, poet and pilot. Every project, even when insignificant in size, requires a

development of an adequate plan. In the development of an IT system that faces real world

issues we immediately realize the complexity of the task. Problems and contradictions multiply

with each step and the level of detail forces us to verify the assumptions. It quickly becomes

clear that a plan, a kind of a roadmap is necessary to accompany us at every decision made and

helps not to go off the course. In case of IT systems, the roadmap is constituted by the

requirement description.

A proper requirement description is the key to success in developing dedicated IT systems

and it should be related to each step of the project development. It should not be a static body

but it should grow and change in different phases of the system development process. User

environment and needs tend to change in time. Therefore, their description should also be

iteratively verified and detailed in the course of system development. Such an approach to

design and development of dedicated IT systems results in the decrease in cost and reduction

in working time. It makes agile reaction possible and it also enables adjusting to unexpected

constraints.

There are numerous methods of preparing requirement descriptions and each one has its

advantages and disadvantages. Some descriptions present user needs in a better way, other show

information flow processes more precisely while there are some that make it possible to

understand at a glance the architecture of the whole project. From the range of the available

solutions, we should choose the ones that suit best particular stages of work and the class of the

system under development.

2

1. User Stories

The first thing that comes to mind is to describe the requirements in a natural language,

i.e. the one we use on a daily basis. The use of an unsystematized and ambiguous language

results in errors in software development that may prove costly to remove and may cause a

delay. In order to maintain the flexibility and simplicity of a natural language and to eliminate

some errors, a certain convention of requirement notation can be assumed.

User Story is a way of formulating requirements that comes from agile methodologies1.

User Stories are usually written in a simple language that is comprehensible to every individual

involved in the project. They usually follow a simple scheme:

As a <role>, I want <goal/desire> so that <benefit>2.

User Stories can also be extended by acceptance criteria and test scenarios. Acceptance

criteria refer to a list of requirements that must be met by a project to consider a given user

story complete. Test Scenarios are the starting point for a repetitive and measurable system

testing and they constitute the basis for acceptance, single, integrating and system tests. An

example of a user story is given in Table 1 below.

The engineering thesis3 concerns analysis of requirements, development of a project and

implementation of a system prototype to support the management of a vehicle fleet. Table 1

presents an example of an initial requirement description from the point of view of both a

dispatcher and a driver. The presented User Story concerns the need to have adequate vehicle

records for both types of users.

User stories are a perfect way for initial grasping of the needs of users but they do not

inform in detail how they interact with the system and there is a large interpretation space for

implementation.

1 S. Allen, Data Modeling for Everyone, Curlingstone, Birmingham, 2002.
2 A. Cockburn, Writing Effective Use Cases, Addison-Wesley Professional, Boston 2000.
3 T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków, 2020.

3

Table 1. Exemplary User Story

Specification User story
Acceptance criteria

Test scenarios
Functional Nonfunctional

Vehicle
records

As a user
{driver,
dispatcher}
 I want to
{display a list
of my
vehicles, move
the data of the
selected
vehicle to the
file (register)}
so that I can
{choose the
vehicle, update
the data}

 Does each vehicle in
the table have its
identification number,
the driver’s name and
the status?

 Can the driver see in
the table only the
vehicles that are
assigned to him?

 Can the dispatcher see
all the vehicle in the
table?

 Is the list of
vehicles displayed
in less than 3
seconds?

Scenario 1: Vehicle
records for the dispatcher

If the dispatcher is logged
in, when moving to the
display of vehicle records,
then the list will include all
the vehicles.

Scenario 2: Vehicle
records for the driver

If the driver is logged in,
when moving to the
display of vehicle records,
then the list will include
only the vehicles that are
assigned to this driver.

Source: T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków, 2020.

In order to avoid that trap and the ambiguity, tools can be applied that are provided by the

Unified Modeling Language (UML). Modeling languages consist of notations that define

system elements and semantics that describes the relationships between them. One of the

methods to display the requirements with the use of UML are Use Case Diagrams. They are

supported by Use Cases and only a set consisting of Use Case Diagrams and scenarios

describing Use Cases from the diagram give a complete picture of requirements.

2. Use cases

Use case is a description of interaction scenarios between the system under discussion

and its external actors, related to the particular goal4. Scenario descriptions may have various

forms but their common feature is the fact that they show how the system reacts to the external

world and what tasks it should perform, without getting into the activities of individual parts.

Use cases do not only define how the system should behave but they also help find

requirement loops at early stages of a project5. When creating use cases, we define at the same

time their mutual relations, which gives a more complete picture of the whole system. Due to

4 A. Cockburn, Writing Effective Use Cases, Addison-Wesley Professional, Boston 2000, p. 15.
5 R. Miles, K. Hamilton, Learning UML 2.0, O’Reilly Media, Inc., Cambridge 2007, p. 29.

4

the formalization of the process it is possible to answer several basic questions: What has caused

the particular behavior? What is the proper functioning of the system in a particular situation?

What alternative and exceptional situations must be predicted? What should the system state be

like after the presented event? The exemplary notation in Table 2 may be used to present the

answers to the above questions.

Table 2. Exemplary use case scenario

EP/01 Vehicle records management

Priority: 1

Actors: Dispatcher

Initial conditions: Dispatcher is logged in.

Trigger: Click on navigation tab.

Main scenario: 1. The system displays a table with a list of vehicles sorted by default by the date of
the latest modification and limited to 10 lines. The table includes such fields as:

 side (identification) number,
 registration number,
 status (active, serviced, etc.),
 driver’s first and second name,
 the latest modification date.

2. The user may move to the next page through pagination. Active page is in bold.

Exceptional situations: The table is empty when no vehicle is available.

Final conditions: The system displays information from vehicle register. Possible operations:
addition: (EP/04), modification (EP/05) and deletion (EP/06).

Relationships EP/04, EP/05, EP/06

Source: Based on T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków,
2020.

There are numerous methods of the use case presentation. Here, a simplified form was

used which includes use cases features that are most frequently applied. Each use case should

have a unique identifier and name. When defining a use case, a priority can be assigned to it

that informs the system developers which functionalities are critical to the end user. Actors are

external entities that interact with the system. Most frequently, they are the users but they may

also represent other systems or organizational units. Initial conditions (Preconditions) refer to

the state of the system before interactions have started, while trigger is an action or event that

initiates a use case. Use case in the system is described here in the form of a scenario, i.e. a

sequence of steps that lead to the completion of a use case. The state of the application after

completing the scenario by the system is referred to as final conditions and an alternative course

5

of action is referred to as exceptional situations. Finally, mutual relationships between use cases

should be indicated – here unique use case identifiers are used.

3. Graphical modeling of requirements - Use Case Diagrams

Presenting lists of identifiers of related use cases in a table (cf. Table 2) is not a clear way

to present their relationships; to illustrate the relationships a graphical form can be used with

the application of a Unified Modeling Language (UML) notation. This form of presenting use

cases and their relationships is referred to as the Use Case Diagram 6,7.

Use case diagrams present graphical relationships between system actors and the

scenarios used by them. Moreover they show visual relationships between scenarios

themselves, e.g. <<include>>, << extend>>.

An example of such a use case diagram for a vehicle fleet management system8 is given

in Figure 1. The diagram shows that use cases to support the work of dispatchers and drivers

are grouped in three domain areas: management of registers (both of vehicles and drivers),

orders management and settlements management. Such a natural way of separating the parts

that are dedicated to the actors (who represent future users of the system) provides the

opportunity to organize the needs and ensures a proper approach to the further steps of the

system development, i.e. designing (including the design of the graphical interface),

implementing and testing (acceptance tests).

6 M. Fowler, UML distilled: A brief guide to the standard object modeling language, Pearson Education Inc.,
Boston 2004.
7 C. Larman, UML i wzorce projektowe, Helion, Gliwice, 2011.
8 T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków, 2020.

6

Figure 1. Use case diagram for a vehicle fleet management support system

Source: Based on T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków, 2020.

7

4. Actions modeling – Activity Diagrams

While use cases answer the question what the system should do, activity diagrams 9 give

the answer to the question how it should be done. Such models, which create workflows in

responsibility areas, make it possible to illustrate the behavior of the key system elements and

show the control and object flow in the system. They are useful particularly in business process

modeling. Such processes are sequences of tasks that result in the completion of a business

objective, e.g. of an order or assignment.

Activity Diagrams correspond to the main domain areas of the system and illustrate basic

processes that occur within them. Modeling experts consider them to be some of the best

diagrams in UML10 as they have substituted the older data flow modeling methods such as Data

Flow Diagrams (DFD) mentioned below in Chapter 5.

Activity diagrams make it possible to create specific requirement models that concern the

behavior of the objects of interest. They present the sequence of actions as well as alternative

ones and also parallel flows. The actions are carried out in line with the proposed use cases and

with the vision of interactions between system elements and the actors present in models with

use case diagrams. The diagrams are drawn with the use of partitions or swim-lanes and they

may present behaviors within responsibility areas of particular system’s fragments or actors.

An exemplary activity diagram taken from the engineering thesis11 and given in Figure 2

shows how an order from Dispatcher is sent to Driver. It presents various interactions with the

system and points where the system performs particular tasks (order creation and modification,

change of the expense status).

The diagram also presents the scope of responsibilities of actors who participate in the

interactions with the system by dividing the diagram into three partitions. Each of them

includes a sequence of actions related to the modeled behavior of one of the three actors:

Dispatcher, Driver and the System.

9 R. Miles, K. Hamilton, Learning UML 2.0, O’Reilly Media, Inc., Cambridge 2007, p. 51.
10 C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
Iterative Development, Pearson Education Inc., Boston 2005.
11 T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków, 2020.

8

Figure 2. Activity diagram of transport order processing

Source: Based on T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków, 2020.

9

5. Other methods of requirement presentation

There are other older methods of description and presentation of functional requirements

that are based on structural approach and were commonly used in the 1970s and the 1980s12.

They are based on Data Flow Diagrams (DFD) and functional domain decomposition in line

with Dijkstra’s concept of abstract level modeling. However, this way of requirement

presentation was troublesome particularly for more complex requirements and multi-domain

scopes related to several groups of users. Multi-level complex models were created that were

difficult to interpret, especially after the introduction of several modifications on various levels,

and completely unclear for future users; as a result their real and useful verification was

impossible or at least very difficult to conduct.

They were accompanied by a data requirement description in the form of conceptual data

model using Entity Relationship Diagrams (ERD). The latter ones have stood the test of time

and are still applied in the development of relational databases; however object models,

especially class and object diagrams that are present in UML, evolved out of them as well as

the entire object approach to system analysis and development.

A very interesting method of requirement modeling was proposed by the authors of an

article on Model-Driven Development13. This is an hybrid approach that shares the elements of

structural and object modeling with a general requirement description by Use Case Diagrams

that is independent of the methodology and uses universal UML elements. It would be

interesting to assess the effectiveness of this approach in requirement modeling that uses data

flow diagrams and neglects some object mechanisms.

A combination of structural and object approach with the consideration of a universal

requirement description with the use of Use Cases (scenarios) and Use Case Diagrams modeling

is given in Figure 3 (following the authors of the mentioned above article). The combination

takes into account the following sequence of actions:

 Requirements, business analysis

 Functions Use Cases: diagrams + scenario description

 Initial Object Diagram (IOD) based on Use Case Diagram

 Refactoring IOD based on Use Cases (scenarios)

12 E. Yourdon, Modern Structured Analysis, Prentice Hall, Inc., Englewood Cliffs NJ 1988.
13 M. Alanen, J. Lilius, I. Porres, D. Truscan, On Modeling Techniques for Supporting Model-Driven
Development of Protocol Processing Applications, [in:] S. Beydeda, M. Book, V. Gruhn (eds.): Model-Driven
Software Development, Springer-Verlag, Berlin, Heidelberg, 2005.

10

 Transforming IOD DFD and building Data Dictionary (DD)

 Specifying the internal behavior of the system in the form of Activity Diagrams

 Transforming DFD into Class Diagram

 Transforming DFD into DFD-like Object Diagram

Figure 3. Activity Diagram illustrating a sequence of actions in a combined approach to requirement
modeling in IT system development

Source: M. Alanen, J. Lilius, I. Porres, D. Truscan, On Modeling Techniques for Supporting Model-Driven
Development of Protocol Processing Applications, [in:] S. Beydeda, M. Book, V. Gruhn (eds.): Model-Driven
Software Development, Springer-Verlag, Berlin, Heidelberg, 2005, p. 319.

11

Conclusions

The article presented common methods of requirement description that are applied in IT

systems development, particularly the ones that are dedicated to specific uses.

It mentioned the ways of requirement description that are used in the initial steps of

system analysis (e.g. descriptions in natural languages as the results of business analysis). It

presented the method of requirement description (User Stories) which is currently applied in

agile methodology, is perfect for creating descriptions at early development stages and makes

it possible to confront the created vision and description following the presented template with

the users’ needs. According to Alistair Cockburn14, the initial requirement vision in the form of

User Stories, when extended and supplemented, is close to scenarios that are used to formulate

precisely the needs and it embodies the “concept of convergence” in the area of requirement

engineering. Scenarios descriptions are used either in visual modeling with UML as Use Case

Diagrams or they supplement the models by defining the details of use cases that appear in

diagrams (Use Case specification).

According to A. Cockburn’s opinion presented above, User Stories should be used to

describe initial visions of business requirements at early stages of analysis. The extended

version of User Stories transformed into proper scenarios should be applied at a later stage

when a specific concept of system requirements is developed. This makes the basis for

development of the requirement graphical model employing UML (Use Case Diagrams).

The next step of analysis and development from the functional point of view is to build a

realization model with the use of UML Activity Diagrams that present the course of procedures

(as sequences of actions) for the domain areas on the basis of the proposed Use Cases and Use

Case Diagrams.

All the methods of requirement description presented above are extremely useful to

analysts and IT developers. Each one can be used at the appropriate stage of requirement

analysis and development. It should not be forgotten that the better understanding of the

requirements of the future system users, the better quality of the product delivered to the

customer (i.e. the ultimate end-user) will be achieved. A sound knowledge of various methods

of requirement description and the ability to apply them selectively considering

complementarity especially in the case of systems dedicated to specific applications is the key

to mastering the requirements by analysts and developers.

14 A. Cockburn, Writing Effective Use Cases, Addison-Wesley Professional, Boston 2000.

12

Bibliography

[1] Alanen M., Lilius J., Porres I., Truscan D., On Modeling Techniques for Supporting
Model-Driven Development of Protocol Processing Applications, [in:] Beydeda S.,
Book M., Gruhn V. (eds.): Model-Driven Software Development, Springer-Verlag,
Berlin, Heidelberg, 2005.

[2] Allen S., Data Modeling for Everyone, Curlingstone, Birmingham, 2002.
[3] Cockburn A., Writing Effective Use Cases, Addison-Wesley Professional, Boston

2000.
[4] Fowler M., UML distilled: A brief guide to the standard object modeling language,

Pearson Education Inc., Boston 2004.
[5] Larman C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development, Pearson Education Inc., Boston 2005.
[6] Miles R., Hamilton K., Learning UML 2.0, O’Reilly Media, Inc., Cambridge 2007.
[7] Woch T., System to support vehicle fleet management, Engineering thesis, WSZiB

Kraków, 2020.
[8] Yourdon E., Modern Structured Analysis, Prentice Hall, Inc., Englewood Cliffs NJ

1988.
[9] Żabińska M., Information systems, Lectures given in summer semester 2018/2019 in

WSZiB Kraków.

Abstract

The article deals with the main issue of requirement engineering, i.e. the method of

presenting functional requirements in the development of IT systems, particularly the ones that

are dedicated to a specific application. On the basis of the examples from the engineering

thesis15 that describe development process of an IT system supporting the vehicle fleet

management, the authors presented various current methods of requirement description: user

stories, simple scenarios, scenarios extended to use cases and UML-based methods. Graphical

methods: use case diagrams, activity diagrams are also illustrated by the examples from the

engineering thesis. Moreover, the authors mentioned some older methods such as data flows

and a relatively new hybrid method based on them. In conclusion, the authors indicated the

need to adjust the method or the combination of methods of requirement description to a

particular stage of the IT system development process.

Key words

Requirement modeling, UML, use case, use case diagram, activity diagram, hybrid

approach.

15 T. Woch, System to support vehicle fleet management, Engineering thesis, WSZiB Kraków, 2020.

